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Abstract
Background: Algorithms describe clinical choices to treat a
specific disorder. To many, algorithms serve as important tools
helping practitioners make informed choices about how best to
treat patients, achieving better outcomes more quickly and at a
lower cost. Appearing as flow charts and decision trees, algorithms
are developed during consensus conferences by leading experts
who explore the latest scientific evidence to describe optimal
treatment for each disorder. Despite a focus on ‘optimal’ care,
there has been little discussion in the literature concerning how
costs should be defined and measured in the context of algorithm-
based practices.
Aims of the study: This paper describes the strategy to measure
costs for the Texas Medication Algorithm project, or TMAP.
Launched by the Texas Department of Mental Health and Mental
Retardation and the University of Texas Southwestern Medical
Center at Dallas, this multi-site study investigates outcomes and
costs of medication algorithms for bipolar disorder, schizophrenia
and depression.
Methods: To balance costs with outcomes, we turned to cost-
effectiveness analyses as a framework to define and measure costs.
Alternative strategies (cost–benefit, cost–utility, cost-of-illness)
were inappropriate since algorithms are not intended to guide
resource allocation across different diseases or between health-
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and non-health-related commodities. ‘Costs’ are operationalized
consistent with the framework presented by the United States
Public Health Service Panel on Cost Effectiveness in Medicine.

Patient specific costs are calculated by multiplying patient units
of use by a unit cost, and summing over all service categories.
Outpatient services are counted by procedures. Inpatient services
are counted by days classified into diagnosis groups. Utilization
information is derived from patient self-reports, medical charts and
administrative file sources. Unit costs are computed by payer
source. Finally, hierarchical modeling is used to describe how costs
and effectiveness differ between algorithm-based and treatment-as-
usual practices.
Discussion: Cost estimates of algorithm-based practices should (i)
measure opportunity costs, (ii) employ structured data collection
methods, (iii) profile patient use of both mental health and general
medical providers and (iv) reflect costs by payer status in different
economic environments.
Implication for health care provision and use: Algorithms may
help guide clinicians, their patients and third party payers to rely
on the latest scientific evidence to make treatment choices that
balance costs with outcomes.
Implication for health policies: Planners should consider consumer
wants and economic costs when developing and testing new
clinical algorithms.
Implications for further research : Future studies may wish to
consider similar methods to estimate costs in evaluating algorithm-
based practices.
Copyright  1999 John Wiley & Sons, Ltd.
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Mental health clinical practice guidelines, protocols, preferred
practices, clinical pathways, and algorithms generally
embrace a concept of optimal care that balances patient
outcomes with costs.1 Thus, it is not surprising to see
clinicians applying guidelines to put the latest medical
discoveries into practice;2–5 at the same time managed care
organizations use guidelines to contain health care costs.6,7

Despite this emphasis on costs, studies developing and
evaluating guideline-driven practices have focused little
attention on how these costs should be measured.8–10 The
issue is exacerbated by a health economic literature that
supports different approaches to measuring costs in appli-
cations that usually focus on general medical patients. Such
a literature ignores problems of homelessness, criminal



incarceration, frequent use of non-specialty providers and
complex and inconsistent health care financing confronting
many patients with severe and persistent mental illnesses.

The goal of this discussion paper is to explain to
administrators, policy makers, researchers and the health
professional how costs may be calculated under guideline-
driven care for patients with severe mental illness. Specifi-
cally, we describe how investigators with the Texas Medi-
cation Algorithm Project (TMAP) are applying the Utilization
and Cost (UAC)11 methodology to measure the cost of
guideline-driven practices to treat schizophrenia and major
depressive and bipolar disorders. TMAP is a public–academic
collaborative effort to develop, implement and evaluate
medication algorithms to treat patients at 20 state-supported
mental health clinics across Texas.12–14,5,15 These facilities
are affiliated with the Texas Department of Mental Health
and Mental Retardation. TMAP medication algorithms are
intended to aid clinical decision-making by organizing
strategic (what treatments) and tactical (how to treat)
decisions into sequential stages.16 Presented as flowcharts,
these decision trees help clinicians consider patient status
and responses to prior treatment to prioritize among
medication options. Investigators plan to evaluate TMAP
by comparing patients whose care follows a medication
algorithm with those following usual care during a 12–24
month follow-up period.

We begin by describingwhat costs should be measured
when developing and evaluating mental health clinical
guidelines. This is done by describing cost–outcome studies
as an appropriate framework to evaluate practice guidelines
as optimal care. We also give a rationale for limiting
calculations to direct health care costs, while expanding the
service scope to include services from both mental health
specialty and general medical care providers. Next, we
describe how costs should be measured specifying data
requirements. Finally, we describe analytic methods to link
changes in costs to algorithm adherence.

What Costs Should Be Measured

Clinical practice guidelines are the result of experts applying
the latest medical knowledge to chart the course of treatment
that either optimizes patient health outcomes (outcome
driven) or achieves the biggest ‘bang for the buck’ (value
driven). Since the latter agenda requires balancing health
outcomes against costs, we use the cost–outcome study as
the appropriate framework to measure costs and evaluate
guideline-driven clinical programs.

Frameworks for cost–outcome studies vary in the literature.
Between 1991 and 1996, the medical literature contained
some 3500 cost–outcome publications,17 with methods cited
in economics18 and human resources;19,20 environmental
regulation;21 pharmacy;22 clinical decision making23 and
management;24 public health25 including health services,26

medical care quality27 and program evaluation28 and clinical
trials.29 Cost–outcome methods have also been summarized
by medical specialty, including medicine,30,31 oncology,32

cardiology33 and mental health.34–37 These studies vary with
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respect to (i) how outcomes are defined, (ii) what costs are
included and (iii) how costs and outcomes are compared.

Outcome Measures

Choice of outcome measures for cost–outcome studies
include effects(symptoms, health functioning, satisfaction),
benefits18 (economic consequences measured in dollars),
utility38 (health states weighted by consumer preferences),
and quality adjusted life years, or QALYS39 (life years
adjusted for morbidity due to illness). TMAP uses effective-
ness measures that are administered during face-to-face
interviews at baseline and 3 month follow-ups. Instruments
assess (i) psychiatric symptoms including the Scale for
Assessing Negative Symptoms,40 the Brief Psychiatric Rating
Scale,41,42 the Calgary Depression Scale,43 the Clinician
Administered Rating Scale for Mania,44 the Internal State
Scale for manic and depressive symptoms45 and Clinical
and Self-Reported versions of the Inventory of Depressive
Symptomatology;46,47 (ii) side-effects including Systematic
Assessment for Treatment Emergent Events48 and the Barnes
Rating Scale for Drug-Induced Akathisia;49 (iii) functioning
and quality of life including the 12-Item Short-Form Health
Survey, or SF-12,50 the Lehman Work and Productive
Activity Subscale51,52 and the Quality of Life Scale53

and (iv) medication compliance including the Medication
Compliance Scale.54

Defining Costs

Cost–outcome studies define costs as the societal value of
alternative uses of expended resources, or ‘opportunity
costs’. Studies do vary, however, with respect to what
elements are costed. All investigators include some measure
of direct cost for diagnosing, treating and assessing patients,
and the cost of accessing these services. Other costs are
indirect (work loss, absenteeism, reduced productivity) and
intangible (pain, suffering) associated with morbidity and
premature mortality.

TMAP investigators measure only direct costs that
encompass all of the patient’s care, with sums calculated
for each payer source. This is consistent with the US Public
Health Service sponsored Panel on Cost-Effectiveness in
Health and Medicine.55–58 Considered as program outcomes,
changes in indirect costs are treated on the ‘benefits’ side
of the cost–benefit scale, and thus are excluded from the
cost calculus to avoid double counting.59 Global health care
includes all payer perspectives (providers, third party payers
and patient out of pocket), service perspectives (care for
schizophrenia, major depressive and bipolar disorders, other
psychiatric, addiction and general medical conditions), and
provider perspectives (Texas state mental health clinics,
other mental health and addiction treatment providers and
general medical providers). Our global emphasis on all of
the patient’s health care providers is designed to capture
costs incurred by patients who, in an effort to avoid
algorithm restrictions, seek care from non-algorithm and
non-specialty providers.



Our focus on the cost of both mental and general medical
services, as recommended by the panel, is particularly
compelling in light of empirical studies evidencing an
association between use of general medical and mental
health care. First, patients frequently seek general medical
providers to care for psychiatric problems.60–62 Second, the
presence of psychiatric symptoms tend to be associated with
more medical care costs.63–69 Third, patients in clinical
environments who use specialty mental health care tend to
use fewer general medical care services, including outpatient
visits,70 inpatient days71 and peak use of primary care
services,72 and at lower general medical costs.73,74 Fourth,
clinical observers report reductions in use of general medical
care following use of mental health care,75–77 treatment for
undiagnosed panic disorder78 and psychotherapy,79 while
others have reported no change,63 or an increase80 in general
medical care following use of mental health services. Finally,
the effectiveness of general medical care may be influenced
by psychiatric status.81 For example, psychiatric status has
been observed to be related to mortality rates among the
elderly with hip fractures,82,83 and myocardial infarction.84

Finally, economists generally prefer to report costs in
terms of a total burden on society. While important for
social policy decisions, such information would do little to
motivate individual providers to adhere to, patients to
comply with or third parties to finance care based on,
clinical guidelines. Thus, we calculate payer-specific costs
to describe how the cost burden is shared among patients,
third party payers and the health care providers.

Comparing Costs and Outcomes

There is disagreement in the literature concerning how costs
and outcomes are to be compared. In the simple case, the
choice as to whether to accept or reject the TMAP algorithm
as a preferred practice becomes clear whenever guideline
adherence is shown to lead to lower (higher) costs and
better (worse) outcomes. The choice is unclear whenever
either protocol or treatment-as-usual achieves a better
outcome, but at higher direct treatment costs. Finally, the
two choices are equivalent if both result in the same outcome
and incur similar costs. The decision rule is summarized in
Table 1.

Whenever the choice is unclear, two cost–outcome
statistics are useful to policy makers to judge the value
of guideline-driven practices. The cost–outcome ‘ratio of
differences’ statistic is based on the formulation of Jerrell

Table 1. Policy choices when comparing guideline-driven clinical
practice (ALGO) versus treatment-as-usual (TAU)

Outcome Costs

higher no difference lower

better unclear ALGO ALGO
no change TAU equivalent ALGO
worse TAU TAU unclear
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and Hu85 and will measure how much additional outcome
is produced for each additional health care dollar patients
in an algorithm based practice incur over patients in
usual care. For randomly assigned patients, the statistic is
computed by

Cost–outcome ratio of differences=
ōA − ōU

c̄A − c̄U

(1a)

where ōA and ōU are average outcomes andc̄A and c̄U are
average costs for algorithm-based and treatment-as-usual
patients, respectively. This statistic is intended to help policy
makers balance the algorithm’s better health outcomes with
anticipated increases in treatment costs.

Most scientific-based algorithms are expected to put more,
rather than fewer, clinical resources into caring for the
patient than what is currently available in traditional care.
Thus, better outcomes from algorithm-based practices may
be the result of more care, rather than from more efficacious
treatment. The cost–outcome ‘difference in ratios’ statistic
measures the extent, if any, to which algorithms will yield
a greater outcome, dollar for dollar, than treatment-as-usual.
Calculations are based on the Siegel29 revitalization of
Grossman’s health production model86 in which health care
costs are treated as inputs (independent variable) to produce
health outcomes as outputs (dependent variable). LetoA(c)
andoU(c) be mathematical functions describing the relation-
ship between health care costs ‘c’ for patients assigned to
algorithm and treatment-as-usual, respectively, on health
outcomes ‘o’. The term ‘marginal productivity’ refers to the
change in outcome associated with an addiction dollar
invested in health care under a given treatment protocol. At
a given initial investment in health care ofc0, marginal
productivity may be computed as: [o(c0 + $1) − o(c0)]/$1.
The ‘difference in ratios’ cost–outcome statistic equals the
difference in marginal productivity between algorithm and
treatment-as-usual patients when both groups have received
an equivalent dollar investment in health care, or

Cost–outcome difference in ratios=

[oA(c0 + $1) − oA(c0)]
$1

−
[oU(c0 + $1) − oU(c0)]

$1
(1b)

Measuring Direct Health Care Costs

We compute direct health care costs with respect to a given
payer source. Computationally, we multiply a patient-specific
use rate for each health service by a payer-specific unit
cost, and sum over all services. Mathematically, if TCip is
the total cost to care for patienti with respect to payerp, then

TCip = u1ic1p + u2ic2p + . . . + ujicjp + . . . unicnp (2)

with uji as the quantity of servicej that patienti consumed
at a costcjp per unit to payerp. For this study, payer groups
include study patients, their local providers and third party
payers and an all-payer class to represent global costs.
Overlapping estimates prevent calculating global costs by
merely summing payer-specific totals.



The strategy relies on (i) a classification of health services
into categories of care,j = 1, 2, . . ., n, that are mutually
exclusive, exhaustive and homogenous with respect to costs,
(ii) payer-specific unit cost scheduleshc1p, c2p, . . ., cjp, . . .,
cnpj, that reflect cost of services to appropriate payer groups
and (iii) patient-specific utilization rates,hu1i, u2i, . . ., uji,
. . ., unij, determined from hybrid use of care data that
integrates available sources of information to create a
comprehensive profile encompassing all of the patient’s
health care providers.

Classification of Health Services

We measure utilization by counting the number of outpatient
procedures by physicians’Current Procedural Terminology
codes87 (CPT), inpatient days by Diagnosis Related Group-
ings88 (DRG) and prescription fills by National Drug Code.
Other services are measured as days by facility type
(e.g., long term psychiatric care, nursing home, addiction
rehabilitation, domiciliary care, transitional residence), day-
treatment days and home care visits.

These systems were selected because they (i) were
designed to classify clinical activities into homogenous
categories with respect to the cost of production and (ii)
are standards for medical billing.

Outpatient procedures under a guideline-driven protocol
are expected to cost differently from those under treatment-
as-usual. We thus distinguish between procedures produced
under an algorithm and treatment-as-usual by a two-digit
extension to the five-digit CPT code. Thus, ‘psychiatric
interviews’ becomeCPT#90820-xyand ‘medication manage-
ment’ CPT#90862-xy, with ‘x’ representing primary psychi-
atric diagnosis (‘S’ schizophrenia, ‘B’ bipolar, ‘D’
depression) and ‘y’ representing protocol adherence (0,
complete adherence; 1, partial adherence; 2, no adherence).

Assessing Unit Costs

Unit cost schedules are determined for each payer source
and contain estimates for each CPT outpatient procedure,
DRG inpatient day and medication. To provide the infor-
mation needs of local sponsors, we price TMAP care based
on the cost environments of local payer groups. However,
the methodology allows us to model how estimates would
change if the study were performed in other regions of the
country and clinical settings, and with a different mix
of players.

Payer groups include practitioners serving study patients
who incur costs to provide care, including tax-supported
county and state hospitals and clinics and the medical
centers with the US Department of Veterans Affairs, as
well as community providers and facilities. Third party
payers include welfare (Texas Medicaid) and US social
security (Medicare) programs helping patients pay for health
care, as well as private health plans serving study patients.
Consumer payments include patient out-of-pocket expenses
incurred to access Texas state mental health facilities, other
mental health and general medical providers and patient
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cost shares calculated for Medicare and other health plans
servicing TMAP study patients.

Unit costs are calculated by multiplying a service-specific
weight, or relativity, by a payer-specific conversion factor.
The relativity, wj, depends only on the service categoryj
and not on the payer source. Thus, a service with a relativity
of 2 would cost twice as much as a service with a relativity
of 1. A payer-specific conversation factor,Fp, depends only
on the identity of the payerp and is the payer’s cost for
services with a relativity of one. The unit cost,cjp, to payer
p for servicej may be calculated by

cjp = wjFp . (3)

For outpatient care, relativities for CPT procedures are taken
from the total work, practice and malpractice components
of the Resource Based Relative Value Units (RBRVU) of
Health Care Financing Administration’s Medicare Physician
Fee Schedule.89,90 These relativities were scientifically
calculated to reflect time, skill and experience required to
perform each procedure. For inpatient care,per diem
relativities by DRGs are computed by dividing the DRG
weight for the entire inpatient stay by a national average
length of stay for the respective DRG. Data come from
sampled participants of the US Medicare program, as
published by the Health Care Financing Administration.91

Finally, patient out-of-pocket expenses by outpatient visit
and inpatient admission are computed from TMAP patient
survey responses.

Conversion factors for inpatient and for outpatient services
are determined separately for each payer. For government-
supported institutions, conversion factors are computed by
adding their annual services budget plus imputed rents for
space and depreciation for equipment, and dividing by total
relativities of all reported services. For community providers,
conversion factors are computed by multiplying a cost to
charge ratio to the 50th or 80th percentile of billed charges
converted to a ‘charge per relativity’. A billed charge per
relativity is calculated by dividing the total charge by the
total relativity for all services itemized in each bill. Charges
are translated into costs by a ‘cost to charge’ factor. The
US Health Care Financing Administration uses a 72% cost
to charge ratio when calculating hospital payments from
charge data under its Medicare program for elderly citi-
zens.91,92 Ancillary services have higher ratios: 80% for
radiology, 85% for laboratory, and 120% for pharmacy.92

Conversion factors for third-party payers, including govern-
ment programs (welfare or Medicaid, social security or
Medicare), private insurance companies and health plans,
can be determined directly from the third party’s reimburse-
ment rates.

Relativities should differ between psychiatric procedures
in algorithm-based clinics and those in treatment-as-usual
facilities. To account for these differences, we estimate a
relativity for each CPT procedure in algorithm-based prac-
tices, with Health Care Financing Administration relativities
applicable for treatment-as-usual practices. Relativity esti-
mates are based on encounter data obtained from com-
puterized records maintained by the Texas state mental



health facilities. For each non-algorithm-based encounter,
medical procedures listed in the data are translated into
CPT codes, assigned an RBRVU and the corresponding
relativities summed to compute a total relativity for the
encounter. Total physician time is also computed for the
encounter. The association between the encounter’s physician
time (independent variable) and total relativity (dependent
variable) is computed using ordinary least squares regression
for a total relativity production model:

Re = b0 + b1 (MDtime)e + b2 (MDtime)2e + ve (4)

where for each encountere, Re is the total RBRVU relativity
and MDtimee is total physician time.b are coefficients.v
is a normally independent and identically distributed random
variate with zero mean and constant variance. The model’s
fit gauges the accuracy of this strategy. The estimated model
may then be used to compute a relativity for algorithm-
based and CPT-coded procedures by entering average
physician time determined to produce algorithm-based
procedures into the estimated regression model. That is,
compared to usual care, algorithm-based relativities are
higher or lower depending on physician time inputs.

The methodology has been applied to the cost accounting
and clinical databases for the Department of Veterans Affairs
health care system.93 Total costs for clinical care, exclusive
of research and education programs, were computed for
1 October 1996 through 30 March 1997. Estimates were
based on actual salaries paid for professional, support
and administrative staff, purchased supplies, paid building
maintenance and utilities and estimates of depreciation
of building and equipment calculated as a straight-line
depreciation of the actual purchase price over the expected
life of the item. Data came from computerized cost
accounting and clinical files housed at the Department of
Veterans Affairs centralized computer in Austin, TX.94 For
the six-month study period, data were obtained from
outpatient departments of 147 medical centers that produced
nearly 35.9 million CPT procedures with an average RBRVU
per procedure of 1.4. Dividing the cost to generate these
procedures into the total RBRVU (35.9 million procedures
× 1.4 RBRVU/procedure) yielded a conversion factor of
$36.88 per RBRVU for Veterans medical facility costs. This
compares with $36.6873 national conversion factor for
physician payments under the US Medicare program for
1998.89 Thus, the unit cost incurred by the Veterans medical
center to produce a psychiatric interview (CPT#90801)
may be computed by $36.88/RBRVU× 3.27 RBRVU for
CPT90801, or $120.60 per interview.

The stability of physician time inputs as predictors of
outpatient productivity, measured in terms of total relativities,
has been tested across outpatient clinics at 146 US Veterans
medical facilities.93 In this example, the unit of analysis is
the clinic level, rather than encounter-level relativities
recommended for the TMAP project. Our clinic-level
analyses were dictated by data that reported quarterly
physician time by facility. MD time is measured as an FTE,
or full time equivalent, equaling an average assigned work
time of 2080 hours per year, minus sick time and vacation
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leave. Results are reported inTable 2. The estimated model
suggests that one additional physician hour will produce on
average 6.2 RBRVU procedures in psychiatry. This is
sufficient to generate 1.7 psychiatric interviews, 1.8 diagnos-
tic interviews, three 20-minute psychotherapy sessions or
4.5 medication management sessions. The high percent
of explained variance (R2 = .640) reveals how important
physician time is to production of medical procedures, even
when using aggregated clinic data that include the services
of psychiatric nurses, physician assistants, social workers
and psychologists.

This strategy has several advantages. First, differences
between algorithm-based and treatment-as-usual practice
costs are reflected by changes in the mix of medication
prescribed and health services consumed as well as from
differences in physician time inputs. However, this method
will not reflect differences in the intensity of non-physician
inputs. Second, estimating unit costs by payer source
improves external validity that permits policy makers to
better understand the cost implications of guideline-driven
practices across consumers, providers and third party payers.
By applying other unit cost schedules, the methodology
permits investigators to estimate how TMAP may cost in
other economic environments. Third, we rely on microcosting
studies, cost accounting databases and market rates to profile
a best estimate of health care costs. By separating previously
determined service-specific relativities from payer-specific
conversion factors, investigators can calculate complete unit
cost schedules for each payer even though not all procedures
or patient types are well represented in the data.

Measuring Use of Care

Data to compute patient use ofall health care come from
different sources.Medical chartsare considered by many
to be a gold standard, though their completeness and
accuracy have not gone unquestioned.95–97 Computerized
administrative filesfrom providers, payers and managers
are popular in the literature because they are inexpensive
to access98–103 but otherwise present problems with104,105 (i)
incomplete data, (ii) non-reporting of patient ‘out-of-plan’
use, (iii) non-standardized definitions and collection pro-
cedures making inter-file merges difficult,106 (iv) licensing
laws that complicate medical file transfers107 and (v)

Table 2. Estimated coefficients for a total relativity production
model based on resource based relative value scale for outpatient
psychiatry and addictions treatment clinics at VA medical centers
from 1 October 1996 through 30 March 199793

Beta Standard t-statistic p,
coefficient error

Constant 7 954.572 6859.609 1.160 .248
(MD time) 12 785.941 2239.535 5.709 .000
(MD time) squared –62.744 135.570 –0.463 .644
R2 = .640
n = 146



uncertain data quality.108 On the positive side, recent studies
suggest that the billing function and performance evaluation
purposes of administrative files may lead some systems to
include checks and balances to ensure data accuracy and
completeness.109,110 Finally, consumer surveysare well
known among epidemiologists who measure national use
rates (National Institute of Mental Health Epidemiologic
Catchment Area study,111 the National Health Interview
Survey,112 the Medical Outcome Study113 and the National
Medical Care Expenditure Surveys114,115). Surveys have been
the only method available to collect data from many hard-
to-reach groups, such as the homeless.116–118 The accuracy
of self-reports, however, will vary with the (i) saliency of
the medical event (painful, interferes with lifestyle, life
threatening, recent, more frequent),119–123 (ii) intensity of
care including longer hospital stays124 or surgery,125 (iii)
characteristics of the patient, with underreporting likely for
older126 patients and for those with low annual incomes,119

(iv) characteristics of the interviewer,127,128(v) respondent’s
expectations and interviewer attitudes and styles129,130 and
(vi) presence of collateral family members or friends.131 On
the other hand, recall error132 and motivational and cognitive
states133 may create special problems when interviewing
patients with mental illness. Estimates of data validity vary,
with studies suggesting that surveys underreport,134–137

overreport11,138 and have modest agreement133,139 with pro-
vider accounts of patient use of mental health care.

To account for patients’ total use of care, UAC constructs
use-of-care profiles based on multiple, or hybrid, sources of
information. The concept is not new. Utilization informatioon
has been constructed by replacing patient self-reports
whenever unavailable or unreliable with information taken
from collateral interviews of family members and friends,131

combining patient self-reports and provider records to
construct a ‘best profile’,140 ‘hybrid’141 or ‘best estimate’,138

combining multiple claims databases142 and merging auto-
mated medical record and chart-review data.143

Figure 1 shows that UAC extends these approaches by
constructing utilization databases from abstracts of written
medical and billing records obtained from the patient’s
health care providers. If reliable records for a specific
provider are unavailable, we turn to administrative files
assembled from the patient’s third party payers (Texas
Medicaid, Federal Medicare programs, private health plans).
In the absence of administrative files, the information is
taken directly from face-to-face interviews with the patient
(UAC Questionnaire).

The process begins when each TMAP patient signs
informed consent permitting investigators to access patient
medical records. Next, a search is conducted to pull patient
event files from computerized administrative databases
maintained by Texas state mental health clinics, federally
supported clinics (e.g. Department of Veterans Affairs
facilities) and government supported welfare (Medicaid) and
social security (Medicare) programs. These data are re-
structured to fit a common architecture that include unique
patient and provider identifiers, activity dates, diagnosis
codes and use-of-care information coded into a standard
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Figure 1. Flow of data collection activities

utilization format described above. For example, medical
procedures coded locally using unique activity codes are
mapped into a ‘best’ CPT code with the aid of a panel of
local clinicians and information management personnel from
the reporting facility who are familiar with both CPT and
the local activity codes.

Subjects are administered the Utilization and Cost Ques-
tionnaire (UAC-Q) at intake and at three-month follow-ups
throughout the 12–24 month study period. As described
elsewhere,11 subjects are asked to describe for the past three
months (i) where they worked, (ii) their private health
insurance coverage, (iii) their participation in the Texas
Medicaid program, (iv) the amount of time and method
they used to travel to their assigned Texas state mental
health clinic, (v) the name and address of each provider
where they had obtained services, including the volume of
care (inpatient days, day hospital days, clinic visits, home
visits) and the reason for encounters (psychiatric, medical),
by type of facility (clinic, emergency rooms, hospitals or
other institutions), (vi) where they get prescriptions filled
and (vii) the location of correctional institutions where they
served time.

A list of all the patient’s health care providers is constructed
from UAC-Q responses, a review of administrative files,
insurance company claims data and records from correctional
institutions. The patient’s insurance company is identified
from his/her employer named in the UAC-Q. The employer
is asked only general information about their employee
health coverage. Correctional facilities are identified in the
UAC-Q and from searches through the Texas criminal
justice system. Each institution is contacted and the location



of their health care providers determined. Finally, the
location of each pharmacy the patient uses is identified from
patient responses to UAC-Q.

Different professionals are listed as one provider if they
share a common medical record and billing system. Thus,
an entire community mental health center may be treated
as a single provider if the patient’s medical record for all
attending clinicians is centrally maintained. Information
about individual providers (name, address, telephone number,
affiliations) is identified over the Internet and in published
medical directories, and confirmed by contacting each
provider. Providers are contacted, and appropriate patient
records obtained, abstracted and double entered into the com-
puter.

Next, medical record abstracts, computerized administrat-
ive files and patient self-reports are converted into standard
response codes. For example, UAC-Q reports only the
number of outpatient visits and inpatient days. A total
RBRVU weight for an average patient reported outpatient
visit, and a total DRG weight for an average patient reported
inpatient day, is estimated by patient diagnosis, age, gender
and provider type from a regression analysis estimated using
data from study patients who completed UAC-Qs and for
whom provider records were also available.

A final database is constructed by assembling patient use-
of-care information from each listed health care provider.
Data come from the provider’s medical records or, if
unavailable, from administrative files obtained from providers
and third-party payers. In the absence of any records for a
given provider, we turn to patient self-reports in the UAC-
Q to describe the study patient’s use of care for the given
provider. Recognizing limitations in written medical records,
we also explore including events reported in third-party
administrative files but not confirmed in patient medical
records. This strategy is based on the theory that administrat-
ive files may be a richer source for cost content when used
for performance evaluation and revenue generating pur-
poses.109,110

This method has several advantages. First, we profile
patient use of care from all available data sources, relying
on patient self-reports whenever provider records are unavail-
able. This is possible because, unlike other health survey
instruments, the UAC-Q asks subjects to describe their use
of care separately for each health care provider. Second,
requests to a given provider for records are limited to only
those subjects who were, in fact, patients of the provider.
We thus avoid the cumbersome task of asking providers
about subjects they have not treated as patients.

Analytic Methods

Guideline-driven practices are difficult to study because
providers caring for patients within the same facility are
likely to share information concerning treatments. To avoid
treatment blends, the schizophrenia and bipolar and major
depressive disorder algorithms were matched across 20
clinics so that no clinic was supporting algorithms for more
than one disorder. In addition, control clinics were selected
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where no algorithm was implemented. Patients attending
each clinic enter the study at the time of a change in
psychiatric medication. Health outcomes are assessed at
intake, and every three months thereafter. The UAC
longitudinal estimates of health care costs span one year
prior to intake, and continuously thereafter.

Our cost data are time dependent events which are nested
within patients who, in turn, are nested within clinics.
Clinics, rather than patients, are assigned to algorithm-based
or treatment-as-usual practices. While many methods are
available, we summarize costs over three-month periods that
end at intake and at each three-month follow-up when the
UAC-Q and health outcome questionnaires are administered.

To handle these data, we employ a three-level growth
curve144,145analysis. These models are also known as random-
effects,146,147 random regression,148,149 empirical Bayes,150

general mixed linear151 and hierarchical linear152 models.
Estimates are calculated using HLM/3L software.153

Mathematically, the three-month cost (csit) for patient i
assigned to facilitys at time t is assumed to be a linear
function of an initial cost level (bc

0), a time growth rate,
bc

1 and random patient–time effects,v. In level two, the
cost growth rate is determined from a facility specific
average rate, fixed characteristics associated with the patient
(xsi) and random patient effects (ec). In level three, the
facility specific cost growth rate is determined by a constant
term (wc

0), a facility-specific treatment indicator variable (IS)
and a random facility effect (u). The treatment indicator
variable assumes the value of one if the facility where the
patient receives care has been assigned to an algorithm-
based practice, and zero if assigned to treatment-as-usual.
The three-level model is represented by

csit = bc
0si + bc

1sit + vc
sit level I (4a)

bc
1si = gc

0s + gc
1xsi + ec

si level II (4b)

gc
0s = wc

0 + wc
1Is + uc

s level III (4c)

wherev, e and u are independently normal random variates
with zero mean and constant variances. These analyses may
be expanded in several ways, with the appropriate model
selected to have the best overall fit of the data. These
include expanding level 1 to include higher orders of time
(t2, t3 etc) to account for non-linear changes in the growth
rate with time. The random effects may be expanded to
include heteroscedastic and autocorrelated level-1 co-variance
structures,154–156 and censored samples that include many
non-users of services. The model will be expanded by the
approach first explored by Duanet al.157 extended by
Pohlmeier and Ulrich158 and described econometrically by
Maddala159 in which use versus non-use (logistic regression)
is modeled separately from the volume of use among
health care users (linear regression). Volume variables are
normalized with a log, or other appropriate, transform-
ation.160–162

The difference in cost between algorithm based and
treatment-as-usual is estimated from the parameterwc

1. A
similar model may be formed to examine the impact of a
practice protocol on health outcomes. If these parameters



are denoted by the superscript ‘o’, then the cost-outcome
ratio of differences would be computed bywo

1 / wc
1.

Alternatively, we construct cost models to estimate the
cost–outcome difference in ratios. These models take the form

osit = bp
0si + bp

1sicsit + vp
sit level I (5a)

bp
1si = gp

0s + gp
1 xsi + ep

si level II (5b)

gp
0s = wp

0 + wp
1 Is + up

s level III (5c)

where the superscript ‘p’ refers to health care production.
The cost–outcome difference in ratios for algorithm-based
practices is computed from an estimate ofwp

1 . While
computations for the confidence intervals and significance
tests for the cost–outcome statistic are simple, the ‘outcome
as a function of cost’ equations ignore ‘costs’ as an outcome
variable that may be subject to the same influences as
patient health outcomes. This may be addressed statistically
using predicted costs as an instrumental variable.19,163,164

Our analytic approach takes into account treatment
assignment by facility, does not require fixed intervals
between actual follow-up observations, can measure how
practice effects vary with time and allows for more flexible
covariance structures for a better model fit.

Conclusion

Clinical guidelines, protocols, preferred practices, clinical
pathways and algorithms all embrace a concept of optimal
care in which the latest medical knowledge is applied to
finding treatments that balance health outcomes with the
costs of care. For TMAP, we therefore measure cost in the
context of a cost–effectiveness study in which ‘effectiveness’
is measured in terms of symptoms, functioning and satisfac-
tion. To define costs, we rely on the US Public Health
Service Panel on Cost-Effectiveness in Health and Medicine
to focus on the direct cost of both mental health and general
medical care. Services include those provided by the
program, other mental health specialty providers and general
medical care, including services patients receive while
homeless or incarcerated in a correctional institution. The
UAC methodology allows us to compute costs with respect
to different payers and in varying economic environments.
Payers include the practitioner who produces the care, public
and private third-party payers and the consumer. Costs are
calculated by multiplying unit costs by patient utilization
rates. Unit costs are calculated by multiplying a payer-
specific conversion factor by a relative value weight assigned
to each outpatient procedure or inpatient day. Patient use
of care is determined by integrating medical records,
administrative files and patient self-reports to obtain a
comprehensive profile of the patient’s use of care. Differences
in costs between guideline-driven and treatment-as-usual
care will be based on differences in the quantity and mix
of services utilized and the time physicians spend diagnosing,
treating and assessing the patient. Hierarchical models are
used to compute differences between practitioners who
follow the medication algorithm and treatment-as-usual in
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costs per patient, in costs per unit change in health outcomes
and in outcome achieved per health care dollar spent.

In conclusion, our cost estimates are based on a structured
data collection methodology that profiles patient use of all
providers and health services, that analytically handles
missing data and that describes how the burden of costs
falls on different payer groups. We thus believe our
methodology represents the most complete system to assess
patient care costs that is available to date.

Acknowledgements

This project was supported, in part, by the Texas Medication
Algorithm Project (TMAP) through grants from the Robert
Wood Johnson Foundation (No. 031023), Meadows Foun-
dation (No. 97040055), the National Institute of Mental
Health (MH53799), Bristol-Myers Squibb Company, Eli Lilly
and Company, Glaxo Wellcome, Inc., Janssen Pharmaceutica,
Novartis Pharmaceuticals Comporation, Pfizer, Inc., Wyeth-
Ayerst Laboratories, the Mental Health Connections, Betty
Jo Hay Distinguished Chair in Mental Health, Rosewood
Corporation Chair in Biomedical Science and a Department of
Veterans Affairs Health Services Research and Development
Research Career Scientist Award (RCS No. 92-403). The
opinions expressed herein, however, are those of the authors
and do not necessarily reflect the views of supporting
agencies and sponsors.

References

1. Field MJ, Lohr KN, eds.Clinical Practice Guidelines: Directions
for a New Program. US Institute of Medicine Committee to Advise
the Public Health Service on Clinical Practice Guidelines. US Dept
Health Human Services, Washington, DC: National Academy
Press, 1990.

2. Clinical Practice Guideline Number 5: Depression in Primary Care,
Vol 1. Detection and Diagnosis, AHCPR Publication 93-0550.
Rockville, MD: US Department of Health and Human Services,
Agency for Health Care Policy and Research, 1993.

3. American Psychiatric Association. APA Practice Guidelines. Wash-
ington, DC: American Psychiatric Association, 1996.

4. Jobson KO, Potter WZ. International Psychopharmacology Algorithm
Project Report: introduction.Psychopharmacol. Bull.1995; 31:
457–459.

5. Crismon ML, Madhukar T, Pigott TA, Rush AJ, Hirschfeld MA,
Kahn DA, DeBattista C, Nelson JC, Nierenberg AA, Sackeim HA,
Thase ME, and the Texas Consensus Conference Panel on Medication
Treatment of Major Depressive Disorder. The Texas Medication
Algorithm Project: Report of the Texas Consensus Conference Panel
on medication treatment of major depressive disorder.J. Clin.
Psychiatry1999; 60: 142–156.

6. Managed Care Services. Behavioral Health: Principles and Procedures
for Quality Care Management. Houston, TX: Behavioral Health
Services, 1993.

7. GreenSpring Health Services. Care Management Model: Clinical
Policies and Procedures. Columbia, MD: GreenSpring Health
Services, 1992.

8. Lubarsky DA, Glass PSA, Ginsberg B, Dear G de L, Dentz ME,
Gan TJ, Sanderson IC, Mythen MG, Dufore S, Pressley C, Gilbert
WC, White WD, Alexander ML, Coleman RL, Rogers M, Reves
JG. The successful implementation of pharmaceutical practice
guidelines: analysis of associated outcomes and cost savings.
Anesthesiology1997; 86: 1145–1160.

9. La Ruche G, Lorougnon F, Digbeu N. Therapeutic algorithms for
the management of sexually transmitted diseases at the peripheral
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